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F R E E  C O N V E C T I O N  I N  T H E  I N T E R N A L  P R O B L E M :  

R E S U L T S  A N D  P R O S P E C T S  

V. I. Polezhaev U DC 532.516 

The fundamental features of free convection, its current classification, mathematical modeling, and software 

based on a computer laboratory are discussed, and findings of an investigation of the structure of free 

convection in closed regions, new formulations of problems of free convection in compressible media, and 

results on the relation of microacceleration measurements and calculations and programs that model free 

convection are given. 

1. Introduction. Free convection is the most important and commonly encountered mechanism of 

macroscopic motion in heat and mass transfer processes, which is especially vividly illustrated by the scientific 

program of the Third Minsk International Forum (Belarus), where reports on free convection were delivered at all 

eleven sections. However, the situation concerning generalization of works devoted to this universal mechanism of 

motion does not correspond to extensive studies of the latter by specialists. Although a demand for generalization 

of the results obtained exists, the present investigation of free convection is confined, because it is impossible "to 

embrace the Universe," to mathematical modeling of convection in the internal problem and mainly to Newtonian 

media, although much of the experimental work conducted pertains to rheologically complicated fluids. 

The subject of this report partially repeats the title of a well-known book by G. A. Ostroumov [1 ] that is 

the pioneering work in investigations started in this field in the postwar years, and its results are reflected in a 

book by L. D. Landau and E. M. Lifshits [2 ], where for the first time the problem of free convection is rigorously 

formulated in the educational literature from the positions of mathematics and physics. In the 1960s, a monograph 

by S. Chandrasekhar on convective stability [3 ], a survey by S. Ostrach [41, and B. S. Petukhov's monograph on 

mixed convection [51 were published, while the 1970s and 1980s saw a book by G. Z. Gershuni and E. M. 

Zhukhovitskii [6] on convective stability, a book by J. Terrier [7] on convection in stratified fluids, a book by A. 

V. Luikov and B. M. Berkovskii on convection and waves [8 ], a monograph by D. Joseph on convective stability 

19 1, a handbook on free convection by O. G. Martynenko and Ya. A. Sokovishin 110 1, a collaborative monograph 

edited by S. Kukac 111 1, one by V. I. Polezhaev, A. V. Bune, N. A. Verezub, et al. [12 ] on mathematical modeling 

of convective heat and mass transfer, the collaborative monograph by B. Gebhart et al. [13 ], a book by Yu. V. 

Lapin and M. Kh. Strelets on convective flows of gas mixtures [14 ], and a monograph by G. Z. Gershuni, E. M. 

Zhukhovitskii, and A. A. Nepomnyashchii on the stability of convective flows [15 l. In the 1990s, books by V. I. 

Polezhaev, M. S. Bello, N. A. Verezub, et al. [16] on convective processes under weightless conditions, by B. S. 

Petukhov on heat transfer in a laminar boundary layer [17], and by Yu. K. Bratukhin and S. O. Makarov on 

interphase convection [18 I and a manual by A. M. Kutepov, A. D. Polyanin, Z. D. Zapryanov, et al. on chemical 

hydrodynamics [19] were published, which reflect some methodological problems and trends in free-convection 

investigations. 

Since investigations of free convection have a rather long history and are being carried out rather 

extensively, there is a need for consideration of its "territory." The tools of investigation also require further study 

since in some problem that arise in power engineering, industrial and civil engineering, environmental science, 

biomedicine, technological processes, and atomic and aerospace technology the adopted models and methods are 

insufficient. The overwhelming majority of works are carried out using the Oberbeck-Boussinesq model, which 
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suffers from important limitations. Moreover, in reference books and textbooks free convection, as a rule, means 

mainly thermal gravitational convection, although investigations and applications of this kind of motion are more 

versatile. 

Below in Secs. 2 - 3  the ideas of the survey [20 ] presented by the author at the First Russian Conference 

on Heat Transfer, where free convection was the subject of discussion at a separate session, are refined and 

developed. The fundamental features of free convection as one of the main kinds of macroscopic motion are 

discussed, and the definition of free convection and its modern classification are clarified. 

In Secs. 4 - 6  some new results obtained mainly in the past 2 - 3  years using mathematical modeling and 

software for solving free-convection problems are surveyed; among them the potentialities of a "computer 

laboratory" and results of investigation of the spatial structure of free convection in closed regions are discussed. 

Some results of solution of applied problems, formulations of new problenis of free convection, the problem of 

relating measurements to computer programs for analysis, and interpretation and control of free convective flows 
are discussed in brief. 

2. Definition, Modern Classification, and Some Fundamental Features of Free Convection. In the modern 

scientific literature free convection means flows without a prescribed external velocity that occur under the action 

of mass or surface forces. They can be classified with respect to the type of acting forces, the kind of working 

media, and conjunction with other processes. A fundamental difference of free convection from forced lies in the 

fact that these flows develop as a result of loss of the stability of the equilibrium or as a consequence of the absence 

of equilibrium. Therefore, they depend strongly on the characteristics of both the motive forces and the medium 

itself. One of the basic characteristics is the density, which enters the formulation of the force, the equation of 

continuity, the heat-transfer equation, and the equation of state. This circumstance leads to a variety of 

formulations of problems in which mathematical models must be formulated in the appropriate way. This is 

especially distinctly manifested in the case of a convective flow that develops after introducing disturbances if the 

initial state of the system was that of unsteady equilibrium. 

The convective processes most commonly encountered are those under the action of a constant gravitational 

force or the gravitation force of the centrally symmetric field that occurs in the majority of objects in the Universe. 

However, the mass force can also be caused by rotation or vibration, which in the absence of a gravitational force, 

i.e., in the weightless state, is manifested as a nongravitational mechanism of convection. The action of forces of 

surface tension causes Marangoni convection, which is also of a nongravitational nature. Forces of expansion 

(compression) caused, for instance, by heating of a compressible medium, which initiates thermoacoustic 

convection, also are the surface forces. In establishing the equilibrium, non-steady-state flows develop that, 

although being substantially different from steady-state convection, must be included, nevertheless, in the general 

classification of free convection. 

Depending on the type of "working medium," which can be weakly compressible, homogeneous or 

heterogeneous, or considerably compressible, as, for instance, in the vicinity of the critical point, convection exhibits 

significant specific features. In a binary system stratified with respect to density due to temperature and/or  

concentration inhomogeneities, "double diffusion" occurs, which can manifest itself under the action of both 

buoyancy forces [7 ] and forces of surface tension (interaction of thermocapillary and capillary-concentration modes 

of convection [12, 16] or by analogy with [7 ] Marangoni "double diffusion"). In conjunction with other processes 

(a forced flow, a heat-conducting solid mass, a reacting medium, radiation, a phase transition, and/or  processes 

of motion leading to a complicated microgravitational situation [16 ]) free convection demonstrates significant 

specific features that give rise to independent classes of problems. 

In constructing models of free convection and developing methods for investigating it the role of its sought 

characteristics is of particular importance. In addition to the traditional characteristics of free convection such as 

the mean heat transfer, the local heat transfer is of interest, which is not monotonic over the surface since on one 

part of the surface heat is removed, while on another - it is supplied, i.e., local superheating can occur. In many 

applications, especially in cryogenic technology, temperature stratification caused by convection plays an important 

role. In material science more subtle characteristics of convection such as macro- and microinhomogeneities of the 

impurity distribution, which are difficult to predict, are of interest. In their analysis as well as in interpretation of 
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data  from remote probing of convection from artificial satell i tes the structure of the convection is of par t icular  

importance [12, 16 ]. In this case, some methods can descr ibe mean character is t ics  ra ther  well but cannot  provide 

sufficiently accurate  data  on local character is t ics  and the structure of free convection, which is the concern of special 

tests (see, e.g., [12, 21-24]) .  

3. Models of Free  Convection.  The  Obe rbeck -Bouss ine sq  model [2, 9]  is the one most widely adopted  for 

the descript ion of free convection even now. The achievements of the Twentieth Century  could not refute it since 

in liquids, as a rule, large tempera ture  differences cannot be main ta ined  because of boiling. For  various reasons 

the tempera ture  differences are  also not large in the technologies of growth of single crys ta ls  and  semiconductor  

s t ructures  from melts. This  model has been employed in the formulation of the free-convection problems in the 

case of liquid filtration in permeable  porous media when the Newtonian law of friction is replaced by the Darcy 

law of resis tance (see, e.g., [6, I I ,  13 ]). In the Obe rbeck -Bouss ine sq  model the change in dens i ty  is accounted 

for only in the buoyancy force. Based on this, extended models with al lowance for variable t ransfer  coefficients 

and nonl inear  change in dens i ty  as a function of temperature  have found some applications.  

In 1968, at the Thi rd  All-Union Heat and Mass Transfe r  Meeting in Minsk (Belarus) convection problem 

formulat ion based on the complete N a v i e r - S t o k e s  equations for a compressible  gas [2.5 ] was a mat te r  of discussion 

but in those years  this model did  not yet have applications and only now does it begin to enjoy wide use. This  

model takes into account the change in dens i ty  fully and,  moreover,  in addi t ion to the Grashof  and  Prand t l  numbers  

it contains such new dimensionless  parameters  as the hydrosta t ic  compressibi l i ty ,  t empera ture  rat io,  and  adiabat ic  

exponent .  In [2 ], where the s tabi l i ty  of a compressible nonviscous gas is discussed,  the s tabi l i ty  cri ter ion for a 

perfect gas is derived in the form of the critical temperature  gradient  (equal to the adiabat ic  g rad ien t  in the case 

of a perfect gas). This cri terion was first derived by Schwarzschild at the beginning of our century  and can be 

represented  as some dimensionless  combination that is the ratio of the actual t empera ture  gradient  to the adiabat ic  

gradient .  This criterion together  with the Rayleigh number  descr ibes  the init iation of convection in a compressible  

viscous gas [26 ]. 

M. Kh. Strelets and  his co-workers (and at almost the same time Paolucci [27 1) developed an in termedia te  

model  of convection (see detai led references in 114 ]) that has proved to be especial ly effective in the case of 

s imul taneous  action of free convection and  a forced flow of a compress ib le  gas. In this  model ,  hydros ta t ic  

compressibi l i ty ,  which is insignificant in regions of small d imensions  but complicates calculat ions because of the 

presence of a small parameter ,  is f i l tered out. Since compressibi l i ty  can be of a t empera ture  or  hydros ta t ic  nature  

and is intr insical ly related to the equation of state, it is necessary to formulate different  mathemat ica l  models  that 

are adequate  for the process under  considerat ion.  We usually do not face such a need in problems of forced 

convection, where compressibi l i ty  manifests  itself, as a rule, at large velocities of motion (dynamic  compressibi l i ty ,  

which is small in problems of free convection). In textbooks and monographs  this aspect is e lucidated  insufficiently.  

Works concerned with deviation from the Boussinesq approximat ion and de te rmina t ion  of the condit ions 

of its applicabil i ty are still being published.  However, de terminat ion  of these condi t ions necessi ta tes  enormous 

efforts since it requires investigation of the dependence  of the deviation e = Nu - Nu0 (where Nuo is the solution 

based on the Boussinesq approximat ion)  on the governing parameters ,  and therefore the volume of work is hugh. 

Some part icular  studies are known in which deviations from the Boussinesq approximat ion  are  demons t ra ted  in 

individual  problems, but this mat ter  is far from being elucidated completely.  It turns out that mixed convection, 

i.e., the interaction of free and forced modes of convection, can be s imulated more effectively in the in te rmedia te  

models than in the complete model with weak compressibil i ty.  However in consider ing only free convection in a 

c o m p r e s s i b l e  gas,  one can model  weak  c o m p r e s s i b i l i t y  at  sma l l  va lues  of the  p a r a m e t e r  of h y d r o s t a t i c  

compressibi l i ty ,  thus passing to the limit in the initial equations [25, 26 I. 

Extension of the O b e r b e c k - B o u s s i n e s q  model to liquids is related to the so-cal led model  of "an i so thermal ly  

incompressible liquid" in which the densi ty  is variable but independent  of the pressure.  It is impor tant  that  in the 

equation of continuity the dens i ty  is writ ten in general ized form since the change in dens i ty  with time, e.g., in the 

presence of high-frequency vibrat ions,  can be considerable.  This  model is discussed in [28-30] but it is still 

developed insufficiently. In cases of a complicated change in the motive force, for instance,  in the mass  force in the 

presence of rotation, it is necessary to allow for the Coriolis forces, and in a more complicated case knowledge of 
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Fig. 1. Comparative characteristics of the efficiency of large-scale computation 

tools based on microprocessors Intei for modeling convective processes (t, 

min): I) 2xi860 (40 MHz), vector regime; 2) i860 (40 MHz), vector regime; 

3) 2xi860 (40 MHz), scalar regime; 4) Alpha (275 MHz); 5) i860 (40 MHz), 

scalar regime; 6) Pentium (133 MHz); 7) main computer IBM-486 (33 MHz). 

the law of motion is required [31 ]. This is important for free-convection studies under conditions of orbital flight 

[16 ], where the space-time change in the forces is of a complicated nature and requires adequate consideration in 

each model mentioned above. 

4. Modeling Methods and Software. The Computer Laboratory and Free-Convection Problems. Consider- 

able progress in free-convection studies has been achieved owing to extensive elaboration of the methods of direct 

numerical solution of nonlinear equations based on the Navier-Stokes equations in the 1960-1980s, which is 

reflected in the works of the well-known scientific schools guided by Academicians K. I. Babenko, A. A. Samarskii, 

and N. N. Yanenko. Therefore this trend a good scientific base exists in the CIS (see a more detailed bibliography 

in [12, 22-24, 32 l). Traditionally, methods of stability theory 13, 6, 9, 15] have been a matter of great concern 

in free-convection studies. At present their role is ever increasing because the results of numerical solution are 

difficult to understand and because there is a great bulk of insufficiently processed empirical and numerical 

information, while these methods provide a basis for construction of charts of different regimes and provide 

approaches to make the information coincise. The close association of these methods is a topic of a number of the 

books mentioned [6, 15, 16, 24]. 

Development of convenient tools of mathematical modeling that allow for specificity and variety in 

formulations of free-convection problems and are suitable for large-scale users, is rather urgent. One of the 

approaches along this line is made in connection with creation of the "COMGA" ("Convection in Microgravity and 

Applications) system initially developed for problems of free convection under microgravity conditions [33 ]. This 

system is a convenient tool for modeling of free convection by personal computers. Its menu contains all the 

necessary information for formulation of problems of free convection using the Oberbeck-Boussinesq approximation 

in regions of the simplest form (relations for sides of a region with prescribed initial and boundary conditions of 

the first, second, and third kind for the temperature and/or  concentration and adhesion conditions and/or  

conditions on a free surface that include the gradients of surface tension forces, i.e., Marangoni convection, 

methodological parameters for the calculation, etc.). The mass force is not just the gravitational force but can also 

be caused by rotation or vibrations of the region. A scheme of possible versions of prescribing the mass forces and 

versions of the calculation that differ in the mutual position of heat and/or  mass flows relative to each other and 

with respect to the orientation of the mass forces of this system and classification of the problems contained in the 

system were discussed in earlier works [ 16, 31,33 ] for a simple region in which heat and mass flows are prescribed 
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Fig. 2. Spatial structure of thermal gravitational convection in a cubic region 

exposed to lateral heating (Pr = 0.71; vector lines in central sections a, b, c): 

A) Ra = 105, stationary regime; B) Ra = 8.5'  106, instantaneous pictures at t 

= 300 min. 

that act in just one direction. Even in such a simple case, the binary system includes ten different possible types 

of free convection in the presence of "double diffusion" that differ in the mutual direction of the heat and mass 

flows (salt fingers, a diffusion regime with a parallel direction for these flows or laminated structures with a 

transverse direction for them). 

Thus,  in a simplified geometry this system contains the basic elements of the general classification of 

free-convection problems mentioned above and has already been in operation for several years. There  are a variety 

of examples of problems solved by the authors of this system. Howevc,, its application to problems of free convection 

by researchers inexperienced in solving similar problems is not as simple a matter as had been thought earlier. In 

[33], the notion of a "computer laboratory" for free-convection problems was introduced that includes previous 

experience in solving problems of free convection in its basic subdivisions, illustrative examples, characteristics, 

results of solution of some topical problems that are subdivided into problems potentially contained in the system 

(*), problems solved earlier and repeated with the aid of this system (**), and new problems solved by this system 

(***}. A detailed description of the computer laboratory with the content of its basic subdivisions of isothermal 

forced flows (I), free convection due to mass forces ill) and surface forces (III), and applied problems (IV) and a 

bibliography is given in [33 I. 

For large-scale users, it is important to have convenient and comparatively inexpensive computation tools. 

Recently, personal computers have been equipped with special processor-accelerators of the Intel i860 type, which 

can be inserted into the ports of a personal computer. Software for such a multiprocessor computing system has 

been developed in the laboratory of mathematical and physical simulation in fluid dynamics at the Institute of 

Problems in Mechanics (Russia). Figure 1 compares on a model example the volume of computational work W 

performed by computation facilities (PC AT 486, one and 2• i860 processors in the superscalar and vector regimes) 

available to a large-scale user as well as by new personal computers of the Pentium type. 
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Fig. 3. Isolines of the local Nusselt number  on a heated surface with thermal 

gravitational convection in a cubic region (lateral heating, Pr = 0.71): a, b) 

Ra = 104 and 105, stationary regime; c) Ra = 8.5.106, instantaneous picture 

at 7 = 300 min. 

5. New Results of  Investigations of the Free-Convection Structure in Closed Regions. At present the 

investigation of two-dimensional free-convection problems has made impressive advances, as seen from the refer- 

ences in the cited monographs. The survey [34 ] provides additional information on works devoted to the structure 

of thermal gravitational convection in closed two-dimensional regions which has always been a matter of priority 

in free-convection studies, opening the ways to various applications. The computer laboratory mentioned above 

makes it possible to advance this trend and to solve effectively two-dimensional problems without resorting to 

creating voluminous archives. 

Although a number  of three-dimensional procedures and programs based on the Oberbeck-Bouss inesq  

approximation (see, e.g., [16, 35-40 I), intermediate models [141, and the complete Navie r -S tokes  equations of a 

compressible gas [41 ] are available, investigations in this direction do not make swift advances since, in addition 

to computational difficulties, there are methodological difficulties in analysis of the three-dimensional structure of 

free convection, especially in connection with the large scale and diverse intensity of the flow. 

Here, as earlier in the two-dimensional case, the test problem of thermal gravitational convection in a closed 

region with two side walls having different temperatures and with the remaining walls being heat-insulated, by 

analogy with the problem in [21 ], which is still insufficiently investigated in the three-dimensional case, is of 

importance. Systematic consideration of this problem has been started in 136 I, where the so-called "hybrid" 

difference scheme is used in the calculations. Test calculations made by O. A. Bessonov in accordance with his 

procedure 138 ] are shown in Fig. 2. In depicting the vector structure of the flow, the planes normal to those of the 

drawing are magnified fivefold since the secondary structures in those planes are very weak but, nevertheless, they 

can exert an influence on heat and mass transfer characteristics, which is of importance for some engineering and 

technological applications. At a Rayleigh number  of 105, stationary secondary structures are formed (Fig. 2A, a). 
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Fig. 4. Stabi l i ty  and spatial  structure of thermal  gravitat ional  convection in a 

paral le lepiped with lateral  heating (Pr = 0): A) main flow at W / H  = 2 (lines 

of equal velocity Ca)and  isotherms (b));  B) critical Grashof  number  versus 

width (curve - s tabi l i ty  theory;  calculation by the f ini te-difference method;  

a) main flow; b) s econda ry  flow); C) lines of equal velocity (hor izonta l  

component  u) in the central  parl  of the paral le lepiped:  1) x = 10; 2) 10.7; 3) 

11.35, vertical section; 4) y =  0.125; 5) 0.5; 6) 0.875, vertical section; 7) z = 

0.125; 8) 0.25; 9) 0.5, horizontal  section. 

As the Rayleigh number  increases,  ter t iary  three-d imensional  s tructures (Fig. 2B, a) as well as th ree-d imens iona l  

s t ructures  of the rol ler  type (Fig. 2B, c) appear  that are  apparent ly  of the same nature  as the forced three- 

dimensional  flows, s imilar  to them, in a cavity with a moving boundary  [38 ]. A more deta i led  investigation of the 

evolution of these structures requires in unders tanding  of the transi t ion of free convection from laminar  to turbulent  

flow. 

One of the most in teres t ing results  is the dis t r ibut ion of the local heat flux on a heated or cooled surface 

first demons t ra ted ,  apparen t ly ,  in [36 I. Figure 3 shows plots of constant  values of the local Nusselt  number  for 

different  Ra numbers .  In all the cases the local hcat flow on some part of the region is larger  than in the case of 

heat t ransfer  by conduction,  i.e., local superheat ing  occurs, as has been shown on the basis of two-dimensional  

models. The  th ree -d imens iona l  model gives zones of local superheat ing  on the xy plane with a character is t ic  

maximum. With increase in the Ra number ,  the position of this maximum and the shape of the zone with a maximum 

local heat (mass) flow shift downward,  which can be of interest  in problems of cooling of devices or in analysis  of 

concentrat ion inhomogenei t ies .  However, in the analysis  of pressure rise these effects are  not so important  and,  

evidently,  two-dimensional  (axisymmetr ic)  formulations of problems are  sufficient. The  ment ioned specific features 

of the local s t ructure of heat t ransfer  are qualitatively consistent  with those published in [36 1. but the mean Nusselt  

number  differs,  which is, apparent ly ,  a consequence of using a "hybrid" difference scheme in [36 I. 

For horizontal ly  d i rec ted  crystal l izat ion the formulation of problems on thermal  gravi ta t ional  convection in 

a horizontal  paral le lepiped with a lateral heat flow is of interest  since it allows us to answer  the question of at what 
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Fig. 5. Structure of thermoacoustic processes in a cavity with carbonic gas 

near the critical point under zero-gravity conditions at t = 1.26 sec after the 

start of heating by a thermal pulse (modeling based on the Navier-Stokes 

equations for a compressible gas and the van der Waals equation of state): a) 

profiles of the velocity and thermodynamic parameters at different moments 

of time: 1) one-dimensional model, 2) two-dimensional model; b) lines of 

equal density and field of velocity vectors in the two-dimensional model. 

critical Rayleigh number secondary structures arise and how the critical Rayleigh number and the wavelength of 

the secondary cells depend on the parallelepiped width. In this case, as in that considered above, the methods of 

stability theory play an important role in analysis of the three-dimensional structure. For a long time stability 

theory could not answer this question since in the majority of problems a one-dimensional main flow known in the 

literature as the Birich flow [39 ] was used. If a generalization of it is used as the main flow, as was done in [40 ] 

(see Fig. 4A), then the dependence of the critical Rayleigh number and the scale of the secondary flow on the 

parallelepiped width can be determined. The occurrence of secondary structures in numerical calculations 

performed according to the procedure described in [40 ] is consistent with data of stability theory, which can serve 

as a test of direct numerical solutions in the case of a slightly supercritical Rayleigh number. Such results are still 

not numerous (see also [40, 41 I). Sections of three-dimensional structures in the form of lines of constant velocity 

that are obtained by directly solving the three-dimensional nonstationary equations of convection (Fig. 4C) show 

the specific features of the three-dimensional structure of secondary flows (see details in [40 l). 

6. Examples of Applied Problems and Some New Formulations of Problems of Free Convection. The 

Problem of the Relation of Measurements to Computer Programs That Model Convective Processes. In the last 

10-15 years multiparametric studies of various applied problems have been conducted, for instance, those on heat 

transfer and temperature stratification in vessels, convection and heat transfer in porous rock fill of dams, and 

convection in heat-insulating interlayers of pipelines (see more detailed references in 120 ]). Solution of complicated 

conjugate problems has permitted answering many questions. For instance, solution of the problem on convective 

heat transfer in rotor cavities of turbomachines allows reliable recommendations to be given concerning their 

starting regimes. Consideration of the convection in a dam body helps in designing protective structures and in 

determining their longevity. Analysis of the convection in porous isotropic and anisotropic heat-insulating materials 

makes it possible, on the one hand, to eliminate local superheating of structures (which is very important at high 

pressures and temperatures) and, on the other hand, to determine mean heat losses, which can be substantial due 

to the mass character of heat engineering facilities. 

At present, use of results of free-convection studies in technological applications, especially in technologies 

for obtaining such technically valuable materials as single crystals and semiconductor devices, attracts much interest 

due to the high requirements on the quality of these materials. This is a very complicated area owing to the variety 
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Fig. 6. I l lustrat ion of the calculation of the sensi t ivi ty of thermal gravi tat ional  

convection to quasistat ic microacceleration components  using the "COMGA" 

system: A) time variat ion of the quasistatic of microaccelerat ions component  

N along the x, y, z axes;  t, rain; B) calculation results  for thermal  gravi tat ional  

c o n v e c t i o n  wi th  a l l o w a n c e  for  the  t ime  v a r i a t i o n  of t he  q u a s i s t a t i c  

mic roacce le ra t ion  componen t  a long the x, y a x e s :  a) i s o t h e r m s  of the  

temperature  field at one moment of time in the cell with lateral  heat ing and 

exposure to the quasistatic component;  b) s tream functions at one moment  of 

time in the cell with lateral  heating and exposed to the quasistatic component ;  

c) time variation of the temperature  in the cell, Pr = 15, L = 10 cm, AT = 50. 

T, ~ t, sec. 

of different  methods for growing crystals  (the Czochralski method,  the horizontal and vertical Bridgman methods,  

the noncrucible melting method,  etc.) and  semiconducting structures (various modificat ions of liquid epi taxy,  the 

gas t r anspor t  method) .  The  sought  charac te r i s t i cs  of t h r e e - d i m e n s i o n a l  s ingle c rys ta l s  and  semiconduct ing  

structures vary considerably ,  and therefore the characterist ics  of free convection require different  descr ipt ions 

(macro- and microinhomogenei t ies ,  geometric inhomogenei t ies) .  Here,  mathematical  and  physical  models  have 

been developed and a large volume of results  has been obtained that  underl ies  "technological fluid dynamics ,"  in 

which the above-ment ioned  mechanisms of free convection of the gravitat ional  and  nongravi ta t ional  type play an 

important  role [12, 161. 

Convec t ion  in c o m p r e s s i b l e  med ia ,  which con ta in s  many  new effects  as c o m p a r e d  to that  in the  

O b e r b e c k - B o u s s i n e s q  model and especially with various equations of s tate ,  is a t t rac t ing  ever increasing interest  

owing to insufficient explorat ion of it and some fundamental  scientific problems in as t rophysics  and the physics ot 

critical phenomena.  In compressible  media  the equation of state can have a complicated form, and the adiabat ic  

gradient  may not be a constant ,  as in the case of a perfect gas 12 I, but ra ther  an inhomogeneous  quant i ty ,  ir 

particular,  it can contain maxima. In exper iments  involving interferometr ic  measurements  in a near-cr i t ical  liquic 

with i n s t an t aneous  de l ivery  of a small  thermal  pulse under  ze ro-grav i ty  condi t ions  (g = 0) the  p rob lem o 

suppress ion  of g rav i ta t iona l  convect ion a r i ses  [42 I. In this case,  processes  of e s t ab l i sh ing  equi l ib r ium anc 

developing convection of a compressible  gas are  of interest .  In [43, 44 I, using the van der  Waals  equation of stat~ 

these processes are  considered based on the one-dimensional  N a v i e r - S t o k e s  equations of a compress ib le  gas fo 

the initial s tage and the model of [27 1 for convection. Figure 5a, b shows some results  of calculat ions of the init ia 
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stage of establishing equilibrium that illustrate two-dimensional effects in reaching equilibrium in carbonic acid at 

( T  - T c ) / T  c = 0.001. The calculations were made by means of a procedure specially developed for this class of 

problems [45 ] in a formulation corresponding to 143 l with the use of the van der Waals equation of state but on 

the basis of the two-dimensional equations. In this model a short thermal pulse is delivered not at a point but along 

the line X = 0 (a "thermal knife") for the purpose of a direct comparison of calculation data and results of 

interferometric measurements [42 I. 

Since the free-convection classification mentioned above is quite branched, with almost every variety of it 

being multiparametric, and the acting forces and/or  disturbances are complicated, it is very important that the 

computer programs of mathematical modeling of free convection to be related as closely as possible with the 

equipment in which the physical process is realized, with the purpose of diagnosis of a definite process, analysis 

and interpretation of full-scale data, and, in the future, control of processes in real time. Therefore it is urgent to 

relate data on microaccelerations onboard an orbital space station to the "COMGA" computer system. The most 

detailed data on space-time variation of microaccelerations in an orbital flight are obtained with the aid of the 

American system "SAMS" (Space Acceleration Measurement System) [461. At. present this system is installed on 

the "Mir" space station and with its help data on the change in microaccelerations over many days along three axes 

are obtained that are recorded on a CD ROM that can be used directly, after appropriate processing, with the aid 

of the mentioned system. For this, a special interface of the computer system "COMGA" has been worked out that 

allows input of information from the files in which measurement or calculation data are contained. The low- 

frequency quasistatic components of microacceleration, which cause concentration inhomogeneities, are of greatest 

interest; however from the viewpoint of so-called "gravitational sensitivity" (see details in [16, 47, 48 ]) the high- 

frequency components are also of importance and studies of them are being expanded. Figure 6A illustrates changes 

in the quasistatic microacceleration components on the "Mir" space station along three axes that were obtained as 

a result of calculations in [49 ]. Figure 6B presents results of calculations of thermal convection under microgravity 

conditions using the microacceleration data from Fig. 6A, which also illustrate the capabilities of a special version 

of the "COMGA" system that includes input of information and files and output of information on the instantaneous 

position of the microacceleration vector, instantaneous temperatures and velocities at a fixed point of the volume, 

and isotherms and stream functions in the region. Results of calculations of the temperature variation with time at 

a point (Fig. 6B) show, in particular, the rather high sensitivity of the temperature field to variation of the low- 

frequency microacceleration component. This is a fundamental property of free convection and the topic of studies 

concerned with the search for alternatives in the control of free convection in a wide range of mass forces and for 

new means (databases for quantitative investigation of free convection I48], determination of the level of 

microaccelerations from data on temperature variation {50 ], etc.) necessary for this. 

In conclusion, the author thanks S. A. Nikitin, A. A. Gorbunov, O. A. Bessonov, and V. V. Sazonov for 

materials provided for Secs. 5, 6. 
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